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Abstract

Many large scale computational problems are based on unstruc-

tured computational domains. Primary examples are unstructured

grid calculations based on finite volume methods in computational

fluid dynamics, or structural analysis problems based on finite ele-

ment approximations. Here we will address the question of how to dis-

tribute such unstructured computational domains over a large number

of processors in a MIMD machine with distributed memory. A graph

theoretical framework for these problems will be established. Based

on this framework three decomposition algorithms will be introduced.

In particular a new decomposition algorithm will be discussed, which

is based on the computation of an eigenvector of the Laplacian matrix

associated with the graph. Numerical comparisons on large scale two

and three dimensional problems demonstrate the superiority of the

new spectral bisection algorithm.
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1 Introduction

Many large scale computational problems are based on unstructured com-

putational domains. Primary examples are unstructured grid calculations

based on finite volume methods in computational fluid dynamics, or struc-

tural analysis problems based on finite element approximations. One of the

key problems when implementing such large scale unstructured problems on

a distributed memory machine is the question of how to partition the under-

lying computational domain efficiently.

In this paper we investigate three algorithms for the partitioning prob-

lem for unstructured domains. All three algorithms considered here are re-

cursive, i.e., the computational domain is subdivided by some strategy into

two subdomains, and then the same strategy is applied to the subdomains

recursively. In this way a partition into p = 2 k subdomains is obtained after

carrying out k of these recursive partitioning steps. The three algorithms

considered here thus only differ by the partition strategy of a single domain

into two subdomains. The three algorithms are:

• recursive coordinate bisection (RCB)

• recursive graph bisection (RGB)

• recursive spectral bisection (RSB)

The first two algorithms have been used by a number of researchers, in

particular RCB is a very intuitive approach, which comes immediately to

mind, when considering the partitioning problem. Recursive spectral bisec-

tion (RSB) is a very recent development and is based on the graph partition

algorithm proposed by Pothen, Simon, and Liou [19]. Our main result is that

RSB is a significant improvement over the other two algorithms. Williams

[23], who also investigated RSB has arrived at a similar conclusion.

In section 2, we will formulate a general framework for the partitioning

problem, based on some graph theoretical notation. In section 3 the three

partitioning algorithms will be introduced and other related approaches will

be discussed. Their qualitative behavior will be investigated on a sample

problem. Section 4 will provide a quantitative comparison of the three algo-

rithms on some large structural analysis and CFD problems. Section 5 will

offer some conclusions and possible future directions.



The three algorithms considered are only a small subset of the proposed

techniques. Techniques of decomposing a large domain into small subdomains

for an easier solution have been investigated for quite some time. In the

structural analysis community substructuring is a well known technique, and

domain decomposition has a long history in the field of numerical solution of

PDE's. A complete survey of these developments is beyond the scope of this

paper.

Because of the recent interest in using multiprocessors a large number

of different algorithms for the partitioning problem have been investigated.

There are a number of other approaches to the partitioning problem, which

have been motivated by parallel processors and should be mentioned here.

Simulated annealing has been used by Williams [23] and Nou_-Omid, Raes-

iky and Lyzenga [16]. Other algorithms motivated by physical considerations

arising from structural analysis are the "peeling" algorithm, and a bisection

algorithm based on the centroid of a structure and its principal directions.

These have been proposed by Nour-Omid [15]. The Kernighan-Lin algo-

rithm [13], a very popular algorithm for the graph bisection problem, has

been applied to structures by Vaughn [21]. Farhat [7] has used a variation

of the greedy algorithm to obtain partitions that are suitable for implicit

solvers, and an inertia type of algorithm for partitions that axe suitable for

implicit/explicit solvers where a local operator is factored but the interface

problem is treated explicitly. The related problem of mapping an unstruc-

tured application to the CM-2 has also been investigated by Farhat [8], and

by Hammond and Schreiber [12]. Finally, it should be mentioned that the

graph partitioning problem has been studied at length in the context of VLSI

layout [4], and that there are some interesting connections to multidimen-

sional scaling in statistics (see e.g. [5]). The applicability of some of these

techniques to the partitioning of structures and CFD problems requires fur-

ther investigation.

2 The Partitioning Problem

What constitutes an "efficient" partition is both problem and machine de-

pendent. Given p, the number of processors, one generally would like to

partition the given problem into p subproblems of about equal size (load

balancing), and at the same time minimize the amount of communication
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betweenthe processors.Minimizing the communication is a function of the

both the length of the boundary of the subdomains, as well as of the num-

ber of neighboring subdomains. For an explicit algorithm load balancing is

probably more important than minimizing communication costs, whereas for

an implicit algorithm with higher communication requirements the situation

might be reverse.

In this work the target machine is a MIMD machine with a moderate num-

ber of parallel processors. Specifically we are considering the Intel iPSC/860

with 128 processors [1]. The target application is an explicit two dimensional

Euler solver for unstructured meshes, developed by Barth and Jespersen

[2, 3]. With this application/machine combination in mind the partitioning

problem can be defined more precisely.

The partitioning problem can be considered as a generalization of the

graph bisection problem, which is defined as follows: Given an undirected

graph G, with the set of vertices V and the set of edges E, G = (V, E),

partition V = V_ O V2, V1 N V2 = 0, such that

tEcl= {eJee E;e = (Vl,V,);v, e  ;v2 e (1)

is minimized, subject to some constraint on the partition. Here we chose

[V_[ = [Vzl, if n = IV[ is even, and [V_I = ]Vz[- 1, if n is odd.

The iPSC/860 is based on a hypercube interconnect, and permits the

allocation of subcubes with a number of processors p = 2k,k = 0, 1, ...7.

By applying suitable algorithms for the graph bisection problem recttrsively,

general algorithms for the partitioning problem for p = 2 k can be obtained.

The assumption that the underlying problem can be expressed as an

undirected graph is in no way restrictive. For example, for our target appli-

cation, the upwind llnite-volume flow solver for the Euler equations, proposed

and implemented on the Cray-2 by Barth and Jespersen[3], one only has to

change from the computational mesh to its dual. In a mesh-vertex scheme,

solution variables axe associated with each vertex of the mesh and flux com-

putation is performed at edges of the non-overlapping control volumes which

surround each vertex. Each control volume consists of a number of trian-

gles, surrounding a vertex. Each edge of the mesh joins a pair of vertices

and is associated with one edge of the control volume. In the partitioning

which we are planning to use, mesh triangles are assigned to processors. Flux

computations are identical to the serial computation, but computed by the



individual processors associated with the triangles. Communication is re-

qnired along edges, which are shared between adjacent triangles residing in

different processors. Hence for the purposes of establishing the partitioning

of the problem, i.e. the assignment of triangles to different processor, we

consider the dual graph. The triangles of the original mesh are the vertices

of the dual graph, and two triangles are considered to be adjacent vertices

of the dual graph, if and only if they share an edge in the original mesh. A

graph partitioning of the dual graph will thus yield an assignment of trian-

gles to processors. In a similar way most general partitioning problems can

be transformed to a graph partitioning problem. The approach used here is

thus quite generally applicable.

This relationship between the unstructured mesh and its dual is shown

in Figures 1 and 2. Figure 1 shows an unstructured grid for a four element

airfoil, which has been generated by D. Jespersen, NASA Ames Research

Center. The grid has 6019 vertices, 17473 edges, and four bodies. The dual

graph of the four element airfoil problem is shown in Figure 2. It has 11451

vertices (triangles in original grid), 16880 edges (interior edges in original

grid), and also four bodies. This example will be used in the next section to

illustrate the three different partitioning algorithms.

3 Three Partitioning Algorithms

The general idea behind the three partitioning algorithms is to use an optimal

strategy to partition a domain into two subdomains, and then to apply the

same algorithm recursively for k steps until p = 2I' subdomains have been

obtained. All three algorithms thus only differ in the partitioning strategy

for a simple domain into two subdomains.

3.1 Recursive Coordinate Bisection(RCB)

This is probably the easiestalgorithm conceptually among the three. It is

based on the assumption that along with the setofverticesV = (vl,v2,....v_),

there are alsotwo or three-dimensional coordinatesavailablefor the vertices.

For each vl E V we thus have an associated tuple vi - (zi,yi)or triple

vl = (zl,y¢,z_),depending on whether we have a two or three dimensional

model. A simple bisection strategy for the domain is then to determine
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the coordinate direction of longest expansion of the domain. Without loss

of generality, assume that this the z-direction. Then all vertices are sorted

according to their z-coordinate. Half of the vertices with small z-coordinates

are assigned to one domain, the other half with the large z-coordinates are

assigned to the second subdomain. RCB is summarized in table 1.

Table 1: Recursive Coordinate Bisection (RCB).

1) Determine longest expansion of domain (x, y, or z direction)

2) Sort vertices according to coordinate in selected direction

3) Assign half of the vertices to each subdomain

4) Repeat recursively (divide and conquer)

The partition into eight subdomains, which results when applying RCB

three times to the dual of the unstructured grid for the four element airfoil

is shown in figure 3. Clearly the subdomains in tignre 3 are long and skinny

as a result of the very fine grid near to the airfoil. The domains are also

disconnected and have a few isolated outlying vertices. This very undesirable

property of the partition is a result of the very uneven spacing of the grid

points. Also connectivity information does not enter the RCB algorithm at

all. Hence one should not expect (in general) that the algorithm creates
connected subdomains.

3.2 Recursive Graph Bisection

The weakness of the RCB is that the algorithm does not take advantage of

the connectivity information given by the graph. After all, the main goal

is to minimize the number of graph edges, which are connecting different

subdomains. Thus instead of using the Euclidean distance between vertex

coordinates, one should rather consider the graph distance between vertices

given by d(_i, vi) = I shortest path connecting vi and vjI. With his change

in metric one can define a new partitioning algorithm, which here is called

recuzsive graph bisection.

First two vertices of maximal or near maximal distance in the graph are

determined. Then all other vertices are sorted in order of increasing distance

from one of the extremal vertices. Finally vertices are assigned to two subdo-

mains according to the graph distance. The only difficulty is the determina-



tion of the diameter(or at leastof apseudo-diameter)of the graph. However,
there exist somevery good heuristic algorithms for that purpose. These al-

gorithms are also quite well-known in the structures community, since they

can also be used for reducing the storage requirements of sparse matrices in

envelope or skyline storage format. Here the SPARSPAK implementation of

the reverse Cuthin-McKee (RCM) algorithm is used (see [11]).

The SPARSPAK RCM algorithm first finds two pseudo-peripheral ver-

tices in the graph (i.e. vertices which have a very large distance, but which

are not necessarily the pair of vertices with maximum distance). Then start-

ing from one of the vertices, the root vertex, a so-called level structure is

constructed. The level structure is a convenient way of organizing the ver-

tices in the graph in sets of increasing distance from the root. Hence the level

structure delivered by the SPARSPAK RCM algorithm forms the basis for

the recursive graph bisection algorithm. Half of the vertices, the ones which

lie closer to the root are assigned to one subdomain, the remaining vertices

to the other subdomain. If we start out with a connected graph then by

construction it is guaranteed that at least one of the two subdomains (the

one including the root) is connected. RCB is summarized in table 2.

Table 2: Recursive Graph Bisection (RGB).

1) Use the SPARSPAK RCM algorithm to compute a level structure

2) Sort vertices according to the RCM level structure

3) Assign half of the vertices to each subdomain

4) Repeat recursively (divide and conquer)

Figure 4 shows the result of applying RGB to the airfoil problem. The

maximum distance in the graph is apparently from a point in the very fine

mesh near the front of the large airfoil (red domain) to somewhere in the fine

mesh between the third and fourth airfoil (white domain). Compared to RCB

the domains are better connected and somewhat more compact. However,

the dark blue domain has a very long boundary, winding around the back

of the airfoil configuration, as well as a small disconnected component at

trailing edge of the first airfoil. Both phenomena are not desirable. From

a qualitative point of view RGB appears to be better than RCB, since the

domains maintain better connectivlties.
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3.3 Recursive Spectral Bisection

The third algorithm to be presented here is of quite a different nature and

on first glance considerably less intuitive. The recursive spectral bisection

algorithm (RSB) is derived from a graph bisection strategy developed by

Pothen, Simon, and Liou [19], which is based on the computation of a specific

eigenvector of the Laplacian matrix of the graph G. The Laplacian matriz

L(G) = (l,_), i, j = 1 .... n is defined by

_d1 if (v_,vj) G E
l_j= - eg(v_) ifi=j

otherwise.
(2)

It is easily seen that L(G) = -D + A, where A is the adjacency matrix of

the graph, and D is the diagonal matrix of vertex degrees. Traditionally

spectral properties of the adjacency matrix have been investigated in graph

theory. Recently, however, Mohar [14] has gathered convincing evidence that

the Laplacian matrix is the more natural object for the study of spectral

properties of graphs. One of the reasons is that L(G) is closely related to

the Laplacian operator. Specifically, if we consider the standard discrete

five point Laplacian on a rectangular grid, then the discrete Laplacian and

the Laplacian matrix coincide, if Neumann boundary conditions are imposed.

Thus one can consider the Laplacian matrix as a generalization of the discrete

Laplacian operator for general graphs. This relationship isexplored in more

detail in [19].

The Laplacian matrix has a number of intriguing properties, which are

just listed here. For details and proof see [14]. First note that the bilinear

form associated with the Laplacian matrix can be written as follows:

ztLz = - _ (z_ - z,_)_. (3)

(t,,=)eE

From this it follows that L(G) is negative semidefinite. From the definition of

L it also follows that the largest eigenvalue A1 is zero, and that the associated

eigenvector is _', the vector of all ones. This is simply a consequence of the

particular choice of diagonal elements in L(G). If G is connected then A_,

the second largest eigenvalue, is negative. The magnitude of A2 is a measure

of connectivity of the graph or its expansion (see [14] and the references

therein).
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What isof interesthere isthe eigenvector_72associated with A2. It turns

out that thiseigenvectorgives some directionalinformation on the graph. If

the components of _2 are associated with the corresponding verticesof the

graph, they yielda weighting for the vertices.Differencesin thisweight give

a distance information about the verticesof the graph. Sorting the vertices

according to thisweight provides then another way of partitioningthe graph.

Eigenvectors of the adjacency matrix have been used previously to find

graph partionings,e.g.,[20](fora more detailedsurvey see [19]).The special

properties of _2 have been investigatedby Fiedler [9,10]. His work gives

most of the theoreticaljustificationof the uses of the second eigenvectorof

the Laplacian matrix for the partitioningalgorithm. Hence thiseigenvector
is called Fiedler vector for short.

The actual computational chailenge of the RSB algorithm is the effective

computation of the Fiedler vector. Here the Lanczos algorithm (see [18])

is used, since it does not require any manipulation of the Laplacian matrix

L(G). All that is needed are matrix vector multiplications with L(G). These

can be implemented at no additional storage cost, since the Laplacian ma-

trix directly reflects the structure of the graph. Since only one eigenvector is

required a special version of the Laaczos algorithm is employed here, which

makes use of rational function approximation in order to compute approxi-

mations to A2. This technique is discussed in [17]. The algorithm from [17]

is used directly with only one simple modification, which avoids the unnec-

essary computation of approximations to the trivial eigenvector a_l - _'. In

summary the recursive spectral bisection algorithm is given in table 3.

Table 3: Recursive Spectral Bisection (RSB).

1) Compute Fiedler vector for graph using the Lanczos algorithm

2) Sort vertices according to size of entries in Fiedler vector

3) Assign half of the vertices to each subdomain

4) Repeat recursively (divide and conquer)

When RSB is applied to the airfoil problem, the partition in figure 5 is

obtained. Figure 5 shows that the domains obtained from RSB are both

connected (even though there is no theoretical guarantee for it), and nicely

rounded and compact. Visually the result of RSB appears to be the most

pleasing partitioning.
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Table 4: Number of edges cut [Ec[ on airfoil problem ( [El = 16,880)

partitions RCB RGB RSB

2 118 175 91

4 296 436 208

8 529 618 299

16 863 950 462

32 1193 1334 743

64 1653 1878 1154

128 2218 2529 1763

4 Comparison of the three algorithms

When comparing qualitatively the partitionings resulting from the three al-

gorithms, we have made the following observations in the previous section:

RCB creates long, narrow, and disconnected domains. RGB creates more

compact domains, but their boundaries are "fuzzy", and sometimes they are

disconnected. RSB creates well balanced, connected domains, which yield a

visually most pleasing partitioning.

All three algorithms have been implemented both on a Silicon Graphics

4D/25 and a Cray Y-MP. In terms of execution time, RSB is currently the

most demanding. However, all three algorithms deliver partitions in a few

seconds time on the Y-MP. This is small compared to both the actual execu-

tion time of a flow solver, and also the time required to generate grids. Hence

we consider the actual runtime of the three algorithms as a less important
issue.

In order to get a better quantitative Comparison, we consider the number

of edges of the original graph, which are connecting the different subdomains.

For brevity these edges in the "cut'-set of the partition will be called Ec. Ta-

ble 4 below gives the number of edges in Ec for the three different algorithms

for the unstructured grid discussed above. The three algorithms also have

been applied to a more refined grid for the same problem. The dual graph

of this more refined grid, which is used as the basis of our co m'putation has

30,269 vertices and 44,929 vertices. The results for this larger problem are

given in table 5.

Obviously RSB yields uniformly the best partition, when counting the



Table 5: Number of edges cut ]Ec[ on refined airfoil problem ( IE[ =

44,929)

partitions

2

4

8

16

32

64

128

RCB RGB RSB

126 390 126

336 938 290

859 1289 546

1433 1775 832

1997 2452 1180

2634 3251 1793

3552 4405 2735

number of edges cut. RGB has the worst performance, which is a reflection

of the observation about the long boundaries created by RGB. The more

interesting and relevant quantity, however, would be the reduction in execu-

tion time observed on a parallel machine, using the different partitions. This

work is currently in progress, and results will be reported elsewhere [22].

Initial results from a parallel implementation of the Euler solver [3] on the

128 processor iPSC/860 at NASA Ames Research Center indicate, that the

reduction in execution time is directly proportional to the reduction in JEcl.

For example, the Euler solver with the ttSB partition run on 128 processors

about 20% faster than the same code with the RCB partition.

Let us finally consider some large three dimensional structures problems.

The three algorithms are also applied to the graphs based on the connectivity

of finite element models. The two structures considered here are a model of

the Space Shuttle solid rocket motor aft skirt and a model of a car body. Both

have been discussed by Deuermeyer in [6]. The shuttle aft skirt problem has

12,598 vertices and 91,961 edges, the car body problem has 45,087 vertices

and 163,734 edges. These problems have a much higher connectivity that the

unstructured grid problems. The results for partitioning these two problems

with the three algorithms are given in tables 6 and 7.

The results in tables 6 and 7 demonstrate that the advantage of recur-

sire spectral bisection is even more pronounced for large three dimensional

problems, ttSB is in some cases almost twice as good as either RCB or RGB.

Furthermore it is somewhat a surprise that RGB is performing quite well on

these problems. In contrast to the two dimensional airfoil problem, RGB has
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Table 6: Number of edges cut [Ec[ on shuttle aft skirt

partitions RCB RGB RSB

2 837 607 429

4 4818 2139 700

8 9927 3893 1793

16 13772 5968 4251

32 19728 10160 7237

64 25104 16804 12704

128 31011 24604 19084

Table 7: Number of edges cut IEct

partitions
2

4

8

16

32

64

128

RCB RGB

953 807

3647 1906

5211 3639

7694 6294

11542 9880

17463 14557

24279 21925

on car body

RSB

651

1293

2492

3514

4978

7834

12255
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here an advantage over the coordinate bisection scheme. Figures 6, 7, and 8

depict the partionings obtained from the three algorithms on the shuttle aft

skirt. It is important to notice that the considerable quantitative differences

in table 6 are not obviously visible from the figures. These pictures indicate

that our visual perception may be inadequate, and that an automatic par-

titioning algorithm is a necessity when considering large three dimensional

problems.

5 Conclusions

We have introduced recursive spectral bisection (RSB), a new algorithm for

unstructured grid decomposition. Recursive spectral bisection shows the best

performance on unstructured grid problems and large scale finite element

problems, when compared to recursive coordinate or graph bisection. As

a measure of efficiency the number of edges in the cut-set has been used.

Some initial results on a parallel application axe very promising. I_SB has

demonstrated its great potential when used in connection with an explicit

Euler solver on an unstructured grid.
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Fi_e 1: Unstructured Mesh _or Four _lemen_ Airfoil,
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Fig_e 2: Dual Graph of Unstructured Mesh for Four Elemen_ Air-
foil.
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Fi_c 3: RC:B Algori_hm for Airfoil Problem (8 s,ubdom_ns).
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Fi_e _: RGB Algorithm for Airfoi| Problem (8 subd.om_ns).
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Fi_e 5" RSB Algorithm for Airfoil Problem (8 ubdom_ns)o
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Figure 6" RCB Algorithm for Shuttle Aft Sklrt Problem (8 subdo--

mains).
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°

Figure 7: RGB Algori_hm for Shu_le Aft $_r_ Problem (8 subdo-

m_ns).
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F_gu_e8" RSB A_gor_thm for Shuttle Aft $k_r_ Problem (8 subdo-

mains).
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